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Finite difference method by using Mathematics 
M. D. MIKHAILOV 
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Abstract-Rules automatically generating the classical shape functions and finite difference patterns are 
developed. Finite difference solutions of Laplace equation, Fourier equation, and the classical second- 

order wave equation are demonstrated by using Muthematica. 

INTRODUCTION 

IN THE last years a new generation of software has 
appeared that will completely change research and 
education. One such package is Mathematics that 

allows the creation of notebooks mixing text, ani- 

mated graphics, and actual input. Mathematics 

handles numerical, symbolic, and graphical com- 
putations in a unified way. Detailed information is 

given in ref. [ 11. 
The author is developing a series of Mathematics 

notebooks intended to serve a large variety of 
students, designers, engineers, and managers who 
need to use finite element [2] and finite difference 
analysis. The present paper contains a mixture of 
selected materials from several finite difference note- 

books. 
The finite difference method is useful for solving 

fluid dynamics, heat and mass transfer problems, and 
other partial differential equations of mathematical 

physics. This method replaces the partial derivatives 
by appropriate finite difference patterns. In ref. [3] 

Giammo proposed the procedure that computes the 
finite difference expression coefficients corresponding 
to the specified partial derivative. An improved 
version of this algorithm is presented in ref. [4]. 
Giammo’s approach is applicable only for a grid 
consisting of horizontal and vertical straight lines. 

In the present paper a rule generating finite element 
shape functions is proposed. This rule is modified to 
derive automatically the finite difference coefficients 

corresponding to the specified partial derivative in any 
mesh. It is explained how to apply the finite difference 

method to solve Laplace equation, Fourier equation, 
and the classical second-order wave equation by using 
Muthrmatica. 

SHAPE FUNCTIONS RULE 

The finite element method use interpolation func- 
tions, which are called shape functions. The linear 
system Gn = p defined the shape functions vector n, 
where p is the vector of interpolation functions and G 
is a matrix whose column are formed by substituting 
into the vector p the corresponding co-ordinates of 

the node [S]. This equation is used in the following 

rule 

/nf IL= 
shape~unctions[poly_,var_.coor_~ := 

Silplify[ 
Inverse[ 

Transpose[ 
poly/.Table[var[[i]]->coor[[i.jl]. 

(j.LensthCcoorCCllll). 
~i.Lengt~~~~l~lll-Po~~l 

where poly is the list of polynomials, var is the list 

of variables, coor is the list of lists representing co- 

ordinates of node. 
As an example consider the one-dimensional quad- 

ratic element with three nodes. Since we have three 
nodes the list of interpolation functions has three 
members { I, x, .x2}. Because the element is one-dimen- 
sional the list of variables is {x}. Finally, the list 
of lists representing node co-ordinates is { { - 1, 0, I ) ). 
Then the shape functions are 

/nf.?k= 
shapePunctions[(l.x.x^2).{x). 

({-i.O.l))l 
OU*f.Zf = 

((-1 ; x) x, 1 _ x2, x (12+ X)) 

As another example consider the bilinear rec- 
tangular element with length 2b and a height 2~. The 
nodes are labelled 1, 2, 3, and 4 with node 1 at the 
lower left-hand corner. The shape functions are 

O&k= 
3~peFrunctionslIl.x.y.x y).{x.p). 

{{-l.l.l,-l)b.{-l.-l.l_l)a)l 

#U&W = 
((-b + x) (-a + y) (b + x) (a - y) 

4eb ’ 4ab ’ 
0 + x1 (a + Y) (b - x) (a + y) 

4ab * 4ab ) 

DIFFERENCE COEFFICIENTS RULE 

The finite difference method uses variables associ- 
ated with mesh points. At each point the variable is 
only related to the variables at the neighbouring mesh 
points forming the finite difference pattern. 

The field variables can be approximated by using 
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shape functions defined above. We find the desired 

finite difference coefficients by applying the specified 
(1 

partial derivative to the shape functions vector ?I and 

substituting the co-ordinates of the node at which the 
derivative is computed. We propose the following rule 

(1 

coefficients[polp_.var_.coor_,d_.cp_]:= 
f(oduIe[(g,h.p},p=polp; 

g~Invsrse[Transpose[p/. 
TableCvar[fi]]->coor[[i,jJ]. 

{j.Le~thCcoor[[l]]]). 
Il.Le~tbCrar]}]JI; 

h=UW~=D~~.d~~kll I a ~k.Length[dl}] ; 
p/.Table[ear[[i]]-,cp[[i]]. 

{i.Length[var])]); 
SiapIify[g.h]] 

where poly is the list of the interpolating polynomials, 
var is the list of variables, coor is the list of lists 
representing node co-ordinates, d is the list of deriva- 

tive variables, cp is the central point co-ordinates at 
which the derivative is computed. 

Berezin and Zhidkov [6] use the Lagrange inter- 
polation to obtain relations for the first and the second 

derivatives at any given point in terms of the values at 
the neighbouring points. Their results are presented 
also in ref. [7]. The same finite difference patterns give 
the above rule. Two examples follow 

The list of the interpolating polynomials is 

/nfdf.- 
coefficients[{i.x.x^Z)~(x)_((-h.0.h)). 

(x).(h)1 

LAPLACE EQUATION 

The Laplace equation is basic in engineering and, 

at tho same time, is a model case of an elliptic 
equation. We consider here finite difference solutions 
of this equation by using Matltentaticu. Let us find 
the temperature in the square region. At the upper 
boundary the temperature is 1000 while at the other 
boundaries it is 0 [8]. 

The statement of the problem is 

T(O,J-) zz y-(.&O) = T(.L,y) = 0, 7”(.& L) = 1000. 

We introduce a grid consisting equidistant 5 hori- 
zontal and 5 vertical straight lines (Fig. 1). 

The space co-ordinates are x = ih and J’ = kh, 

where i and k are integers. The temperature at point 

FK;. I. Solution region. 

(ik) is related to temperatures at the four neigh- 
bouring points. The vector of temperatures is 

/nf7J= 
TV={T[i.k].T[i-l.k].T[i.k-11. 

T[i*l.k].T[i,k+l]); 

P=rl.x.Y.x-2.Y-2~: 

The list of variables is 

/nfsY!.= 
ear={x.g); 

The list of lists representing node co-ordinates is 

/n/roi= 
coor={(O,-h.O,h.O).(O_O.-h-o-h}); 

The list of derivative variables is 

rafr r/f.= 
dx=jx.x); dps;{y.y}; 

The co-ordinates of the node at which the derivative 

is computed. 

The desired finite difference formula is 

/nf f&y= 

cP=to.O)l 

/nf lSk= 
dif f erenceFormula= 

SirplifH 
jcoefficfents[p,rar,coor.dx.cp]+ 

T[-1 + i, k] + T[i, -1 + k] - 4 TLi. kl + 
T[i, 1 + k] + T[ 1 + i. k] =- 0 

The boundary conditions arc 

lnf ,-$I= 
T[l.5]=T[S.5]~5000; 
Do[T[i.5]=1OOgO:T[I.i]=~Z.il; 

T[i.l]-O.{i.2.41] _ _ _. _ _ _ 
Do[T[l.i]=T[5.rJ~U.c~.~Jl 
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The system of equations is problem [8] 

/nf 17k= dT a2T 
eq-Platten[Table[ T(0, t) = T(l, t) = 0, T(x,O) = sin (rcx). 

diftercncePornula_ 
z=,x,, 

{i.2.3).{k.2.t)ll 

ou1/17/= 
We clear Tand solution from the computer memory 

(-4 T[2, 21 + T[2, 31 + T[3, 21 == 0, T[2. 21 - 4 T[2, 31 l T[2, 41 + 93, 31 == 0. //&*&C= 
10000 + T[2, 31 - 4 T[2, 41 + T[3, 4) == 0, Clear[T.solution] 

2 T[2. 21 - 4 T[3, 21 + T[3, 31 == 0, 
2 T[2, 31 + T[3, 21 - 4 T[3, 31 l T[3, 41 == 0, Then we choose a grid consisting of equidistant 

10000 + 2 V2, 41 + T[3, 31 - 4 T[3, 41 == 0) 

The list of unknown temperature is 

lnf /8k= 
var=llatten[ 

TableCTCi.k].{i.2.3).(k.Z.t)]] 

UU1/18/= 

horizontal and vertical lines. The space and time co- 

ordinates are x = ih and t = kl, where i and k are 
integers. Temperature at point (ik) is related to tem- 

peratures at the three neighbouring points. The vector 
of temperatures is 

ITC2. 21. T[2. 31. TL2. 41. Tt3. 21. Tf3. 31. 
1r3. 411 

The solution of the problem is 

in//P,,= 
solution=Platten[Solre[eq.var]/ll] 

iw/s+ 
ITC2.. 2.1 -> 714.286, fl2.. 3.1 -z 1876.. 
TC2.. 4.1 -z. 4286.71. q3.. 2.1 -> 982.143, 
T[3. , 3. 1 --3r 2600. , Tf3. , 4. ] -> 5267.86) 

The results are the same as those given in ref. [8]. 
The list of all node temperatures s is 

s-ll[Table[ 
~i.k].(k.5}.(1.5)]]1.solution: 

lfatrixPorr[s] 

oul/,?,~.,:.,~~~~~,~~rn= 
0 0 0 0 0 
0 714.286 902.143 714.286 0 
0 1875. 2500. 1075. 0 
0 4285.71 5267.86 4285.71 0 
5000. 10000. 10000. 10000. 5000. 

The graphic representation of this solution is 

M.?Z~:- 
ListPlot3D[s]; 

FOURIER EQUATION 

The Fourier equation is basic in conduction. It is a 
model case of a parabolic equation. We consider here 
finite difference solution of this equation by using 
Marhematica. Let us solve the transient conduction 

~=(T[i.k].T[i-i.k-il. 
T[i.k-l],T[i+l.k-I]); 

The lists of the interpolating polynomials, variables, 
node co-ordinates, and central point co-ordinates are 

fnf2Sk= 
p=(l.t.x.x*2); 
var=(x.t)r 
coor=({O.-h.O.h}.(l.O.O.O)}z 
cp=(O.l): 

The desired finite difference formula is 

ln/.?9J= 
differencePorrula= 
coefficients[p.var.coor.(t).cp].TY== 
a+coefficients[p.ver.coor.(x,x),cp].TV 

ff&f.W= 

_( T[i. T[i. k] ;' + k]) + - == 
1 

a ( 
T[-1 + i, -1 + k] 2 T[i, 

h2 - hzi + k1 + 
T[l + i. -1 + k] 

h2 ) 

The temperature T(i, k) is given by tern 

/&CCC= 
(ter)=T[i,k]l.Simplifp[ 

Solve[differencePorrla. 
T[i,k]]]:tem 

#Ui/30/= 

(a 1 T[-1 + i, -1 + k] + h2 T[i, -1 + k] - 
2a lT[i, -1 + k] + a 1 T[l + i, -1 + k]) / 

h2 

The parameters are [8] 

&9/L= 
h=O.l~a=l~l=O.Ol16; 

The initial condition is 

/nfXY.= 
Do[T[i.O]-Chop[lr[Sin[Pi h ill]. 

{i.O.lO)l 

The boundary conditions are 

/n/331= 
Do~T[O.kl=TClO.k]-O.{k.lO}] 

The rule finding the temperature is 

/nf34k= 

TCa _.b_]:=T[a.b]=H[i=e:k=b:tem] 



378 M.D. MIKHAILOV 

The solution rule is We clear the computer memory 

solution[kX_.kT_]:= 
Table[T[i.k].{k.O.kT]. 

{i.O.kX)]//Ii 

The temperature T(i.k) for i = O-5 and k = O-10 is 

/&LV= 
s=solution[S.lO] 

{{O, 0.309017, 0.587785, 0.809017, 0.951057, 1. }, 
{O. 0.303976, 0.578196, 0.795818, 0.935541, 
0.983686). {O, 0.299016, 0.568763, 0.782835, 
0.920278, 0.967637). 
{O, 0.294138, 0.559484, 0.770063, 0.905264, 
0.951851). {O, 0.289339, 0.550356, 0.7575, 
0.890495, 0.936322). 
{O. 0.284619, 0.541377, 0.745142, 0.875967, 
0.921046). (0, 0.279975, 0.532545, 0.732985, 
0.861676, 0.90602). 
(0, 0.275408, 0.523857, 0.721027, 0.847618, 
0.891238). {0, 0.270915, 0.51531, 0.709264, 
0.83379, 0.876698). 
{O, 0.266495, 0.506903, 0.697693, 0.820187, 
0.862395). (0, 0.262147, 0.498633, 0.68631, 
0.806806, 0.848326)] 

This table coincides with the results given in ref. [8]. 
The graphic representation of the temperature is 

/n/J'7J= 
ListPlot3D[t]: 

3v 
6 

WAVE EQUATION 

The classical second-order wave equation is a model 
case of hyperbolic equation. We consider here finite 
difference solution of this equation by using Mafhe- 
marica. Let us solve the problem 

i7’ T (7’7. 

(7*’ - ax” T(0, t) = T(l, t) = 0, 

T(.x, 0) = 0.2.x( 1 -_u) sin (nx), 
dT(x,O) 

at 
- 0. 

M3LV= 
Clear[T,solution,i,k.h.l.al 

Then we choose a grid consisting of equidistant 

horizontal and vertical lines. The space and time co- 

ordinates are .Y = ih and I = kl, where i and k arc 
integers. The temperature at point (i. k) is rclatcd to 
temperatures at the three neighbouring points. The 
vector of temperature is 

h/3p/-= 
~=IT[i.k].T[i-l.k-l].T[i.k-I]. 

TCi+l.k-l].T[i.k-Z]}; 

The lists of the interpolating polynomials, variables, 

node co-ordinates. and central point co-ordinates arc 

/l?i+t?j?~= 
p={l,t,t-Z,x.x*2)r 
var={x.t); 
coor={{O.-h.O.h.O}.{l.O_O_O.-l)}; 
cp={O.O): 

The desired finite difference formula is 

/d 44k= 
differenceFormula= 

coefficients[p~~~~coor.(t.t},cp]. 
= 

coefficients[p+var.coor,(x,x},cp]. 

T[i. -2 + k] 2 T[i. -1 + k] 

l2 - l2 

+ T[i. kl 

l2 
a (T[-1 + i, -1 + k] _ 2 T[i, -1 + k] 

h2 h2 
T[l + i, -1 + k] 

h2 ) 

The temperature T(i, k) is given by tern 

lnf45J= 
{ter)=T[i,k]/.Sirplify[ 

Solre[differenceFormula. 
T[i.klll:te= 

&M45f= 

{a l2 T[-1 + i, -1 + k] - h2 T[i, -2 + k] 
3 3 

== 

+ 

+ 

2 h' T[i, -1 + k] - 2 a 1' T[i. -1 + k] + 

a l2 T[l + i, -1 + k]) / h2 

The parameter is assumed to be 

/nf&'J= 
h=l=O.O5;a=l; 

The initial conditions arc [8] 

/n/471= 
Do[T[i.O]= 

H[O.Zh i(l-h i)Sin[Pi h i]]. 
(i.O.ZO)l 

Do[T[i.l]= 
EI[(T[i-1.0]+T[i+1.0]1/21. 

{i.lS)] 
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The boundary conditions are 

In/ 45?!= 
Do[T[O.k]=T[ZO.k]=O.(k.ll)] 

The rule finding the temperature is 

ln/SOk= 
T[a_.b_l:=T[a.bl=l[i=a.k-b:ter] 

The solution rule is 

solution[ kX__ kT_]:= 
Table[!i[T[i.k].3].(k.O.kT}. 

{i.O.kX)l 

The solution is 

O&G?&= 
s=Chap[ solution[ lO.iOlj 

&lff5~;,= 
{{O. 0.00149, 0.00556. 0.0116, 0.0188, 0.0265, 

0.034. 0.0405. 0.0457, 0.0489, 0.05). 
(0, 0.00278. 0.00653+ 0.0122, 0.019, 0.0264, 
0.0335, 0.0398, 0.0447, 0.0478, 0.0489). 
(0, 0.00505, 0.0094, 0.014, 0.0198, 0.0261, 
0.0322, 0.0377, 0.042. 0.0447, 0.0457). 
(0. 0.00662, 0.0125, 0.017, 0.021, 0.0256, 
0.0302, 0.0344, 0.0377, 0.0398, 0.0405). 
(0. 0.00747, 0.0142. 0.0195, 0.0228, 0.0252. 
0.0278, 0.0302, 0.0322, 0.0335, 0.034). 
(0, 0.00758, 0.0145, 0.02, 0.0237. 0.025. 
0.0252, 0.0256, 0.0261. 0.0264. 0.02653, 
{O. 0.00701, 0.0134, 0.0187, 0.0222, 0.0237, 
0.0228, 0.021, 0.0198, 0.019. 0.0188). 

(0, 0.00584, 0.0112, 0.0156, 0.0187, 0.02, 
0.0195, 0.017, 0.014, 0.0122, 0.0116). 

(0, 0.00417. 0.00801, 0.0112, 0.0134, 0.0145, 
0.0142, 0.0125, 0.0094, 0.00653, 0.00556). 

(0, 0.00217, 0.00417, 0.00684, 0.00701. 
0.00758, 0.00747, 0.00662, 0.00505, 0.00278, 
0.00149). to. 0. 0. 0. 0. 0. 0. 0, 0, 0. O}} 

This table coincides with the results given in ref. [S]. 
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The graphic representation of the solution is 

&&3Y~= 
ListPlot‘Dh 
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