
Pergamon

hr. J Heof Muss Tronu/k. Vol. 37, Suppl I, pp. 375-379, 1994
Copyright 8~7 1994 Elsevier Science Led

Prmted m Great Bntain. All nghts reserved
0017-9310/94$6.00+0.00

0017-9310(93)EOO73-P

Finite difference method by using Mathematics
M. D. MIKHAILOV

Institute for Applied Mathematics and Informatics. P.O. Box 384, Sofia 1000, Bulgaria

Abstract-Rules automatically generating the classical shape functions and finite difference patterns are
developed. Finite difference solutions of Laplace equation, Fourier equation, and the classical second-

order wave equation are demonstrated by using Muthematica.

INTRODUCTION

IN THE last years a new generation of software has
appeared that will completely change research and
education. One such package is Mathematics that

allows the creation of notebooks mixing text, ani-

mated graphics, and actual input. Mathematics

handles numerical, symbolic, and graphical com-
putations in a unified way. Detailed information is

given in ref. [11.
The author is developing a series of Mathematics

notebooks intended to serve a large variety of
students, designers, engineers, and managers who
need to use finite element [2] and finite difference
analysis. The present paper contains a mixture of
selected materials from several finite difference note-

books.
The finite difference method is useful for solving

fluid dynamics, heat and mass transfer problems, and
other partial differential equations of mathematical

physics. This method replaces the partial derivatives
by appropriate finite difference patterns. In ref. [3]

Giammo proposed the procedure that computes the
finite difference expression coefficients corresponding
to the specified partial derivative. An improved
version of this algorithm is presented in ref. [4].
Giammo’s approach is applicable only for a grid
consisting of horizontal and vertical straight lines.

In the present paper a rule generating finite element
shape functions is proposed. This rule is modified to
derive automatically the finite difference coefficients

corresponding to the specified partial derivative in any
mesh. It is explained how to apply the finite difference

method to solve Laplace equation, Fourier equation,
and the classical second-order wave equation by using
Muthrmatica.

SHAPE FUNCTIONS RULE

The finite element method use interpolation func-
tions, which are called shape functions. The linear
system Gn = p defined the shape functions vector n,
where p is the vector of interpolation functions and G
is a matrix whose column are formed by substituting
into the vector p the corresponding co-ordinates of

the node [S]. This equation is used in the following

rule

/nf IL=
shape~unctions[poly_,var_.coor_~ :=

Silplify[
Inverse[

Transpose[
poly/.Table[var[[i]]->coor[[i.jl].

(j.LensthCcoorCCllll).
~i.Lengt~~~~l~lll-Po~~l

where poly is the list of polynomials, var is the list

of variables, coor is the list of lists representing co-

ordinates of node.
As an example consider the one-dimensional quad-

ratic element with three nodes. Since we have three
nodes the list of interpolation functions has three
members { I, x, .x2}. Because the element is one-dimen-
sional the list of variables is {x}. Finally, the list
of lists representing node co-ordinates is { { - 1, 0, I)).
Then the shape functions are

/nf.?k=
shapePunctions[(l.x.x^2).{x).

({-i.O.l))l
OU*f.Zf =

((-1 ; x) x, 1 _ x2, x (12+ X))

As another example consider the bilinear rec-
tangular element with length 2b and a height 2~. The
nodes are labelled 1, 2, 3, and 4 with node 1 at the
lower left-hand corner. The shape functions are

O&k=
3~peFrunctionslIl.x.y.x y).{x.p).

{{-l.l.l,-l)b.{-l.-l.l_l)a)l

#U&W =
((-b + x) (-a + y) (b + x) (a - y)

4eb ’ 4ab ’
0 + x1 (a + Y) (b - x) (a + y)

4ab * 4ab)

DIFFERENCE COEFFICIENTS RULE

The finite difference method uses variables associ-
ated with mesh points. At each point the variable is
only related to the variables at the neighbouring mesh
points forming the finite difference pattern.

The field variables can be approximated by using

315

37h M. D. MI~HAIL~~~

shape functions defined above. We find the desired

finite difference coefficients by applying the specified
(1

partial derivative to the shape functions vector ?I and

substituting the co-ordinates of the node at which the
derivative is computed. We propose the following rule

(1

coefficients[polp_.var_.coor_,d_.cp_]:=
f(oduIe[(g,h.p},p=polp;

g~Invsrse[Transpose[p/.
TableCvar[fi]]->coor[[i,jJ].

{j.Le~thCcoor[[l]]]).
Il.Le~tbCrar]}]JI;

h=UW~=D~~.d~~kll I a ~k.Length[dl}] ;
p/.Table[ear[[i]]-,cp[[i]].

{i.Length[var])]);
SiapIify[g.h]]

where poly is the list of the interpolating polynomials,
var is the list of variables, coor is the list of lists
representing node co-ordinates, d is the list of deriva-

tive variables, cp is the central point co-ordinates at
which the derivative is computed.

Berezin and Zhidkov [6] use the Lagrange inter-
polation to obtain relations for the first and the second

derivatives at any given point in terms of the values at
the neighbouring points. Their results are presented
also in ref. [7]. The same finite difference patterns give
the above rule. Two examples follow

The list of the interpolating polynomials is

/nfdf.-
coefficients[{i.x.x^Z)~(x)_((-h.0.h)).

(x).(h)1

LAPLACE EQUATION

The Laplace equation is basic in engineering and,

at tho same time, is a model case of an elliptic
equation. We consider here finite difference solutions
of this equation by using Matltentaticu. Let us find
the temperature in the square region. At the upper
boundary the temperature is 1000 while at the other
boundaries it is 0 [8].

The statement of the problem is

T(O,J-) zz y-(.&O) = T(.L,y) = 0, 7”(.& L) = 1000.

We introduce a grid consisting equidistant 5 hori-
zontal and 5 vertical straight lines (Fig. 1).

The space co-ordinates are x = ih and J’ = kh,

where i and k are integers. The temperature at point

FK;. I. Solution region.

(ik) is related to temperatures at the four neigh-
bouring points. The vector of temperatures is

/nf7J=
TV={T[i.k].T[i-l.k].T[i.k-11.

T[i*l.k].T[i,k+l]);

P=rl.x.Y.x-2.Y-2~:

The list of variables is

/nfsY!.=
ear={x.g);

The list of lists representing node co-ordinates is

/n/roi=
coor={(O,-h.O,h.O).(O_O.-h-o-h});

The list of derivative variables is

rafr r/f.=
dx=jx.x); dps;{y.y};

The co-ordinates of the node at which the derivative

is computed.

The desired finite difference formula is

/nf f&y=

cP=to.O)l

/nf lSk=
dif f erenceFormula=

SirplifH
jcoefficfents[p,rar,coor.dx.cp]+

T[-1 + i, k] + T[i, -1 + k] - 4 TLi. kl +
T[i, 1 + k] + T[1 + i. k] =- 0

The boundary conditions arc

lnf ,-$I=
T[l.5]=T[S.5]~5000;
Do[T[i.5]=1OOgO:T[I.i]=~Z.il;

T[i.l]-O.{i.2.41] _ _ _. _ _ _
Do[T[l.i]=T[5.rJ~U.c~.~Jl

The finite difference method 317

The system of equations is problem [8]

/nf 17k= dT a2T
eq-Platten[Table[T(0, t) = T(l, t) = 0, T(x,O) = sin (rcx).

diftercncePornula_
z=,x,,

{i.2.3).{k.2.t)ll

ou1/17/=
We clear Tand solution from the computer memory

(-4 T[2, 21 + T[2, 31 + T[3, 21 == 0, T[2. 21 - 4 T[2, 31 l T[2, 41 + 93, 31 == 0. //&*&C=
10000 + T[2, 31 - 4 T[2, 41 + T[3, 4) == 0, Clear[T.solution]

2 T[2. 21 - 4 T[3, 21 + T[3, 31 == 0,
2 T[2, 31 + T[3, 21 - 4 T[3, 31 l T[3, 41 == 0, Then we choose a grid consisting of equidistant

10000 + 2 V2, 41 + T[3, 31 - 4 T[3, 41 == 0)

The list of unknown temperature is

lnf /8k=
var=llatten[

TableCTCi.k].{i.2.3).(k.Z.t)]]

UU1/18/=

horizontal and vertical lines. The space and time co-

ordinates are x = ih and t = kl, where i and k are
integers. Temperature at point (ik) is related to tem-

peratures at the three neighbouring points. The vector
of temperatures is

ITC2. 21. T[2. 31. TL2. 41. Tt3. 21. Tf3. 31.
1r3. 411

The solution of the problem is

in//P,,=
solution=Platten[Solre[eq.var]/ll]

iw/s+
ITC2.. 2.1 -> 714.286, fl2.. 3.1 -z 1876..
TC2.. 4.1 -z. 4286.71. q3.. 2.1 -> 982.143,
T[3. , 3. 1 --3r 2600. , Tf3. , 4.] -> 5267.86)

The results are the same as those given in ref. [8].
The list of all node temperatures s is

s-ll[Table[
~i.k].(k.5}.(1.5)]]1.solution:

lfatrixPorr[s]

oul/,?,~.,:.,~~~~~,~~rn=
0 0 0 0 0
0 714.286 902.143 714.286 0
0 1875. 2500. 1075. 0
0 4285.71 5267.86 4285.71 0
5000. 10000. 10000. 10000. 5000.

The graphic representation of this solution is

M.?Z~:-
ListPlot3D[s];

FOURIER EQUATION

The Fourier equation is basic in conduction. It is a
model case of a parabolic equation. We consider here
finite difference solution of this equation by using
Marhematica. Let us solve the transient conduction

~=(T[i.k].T[i-i.k-il.
T[i.k-l],T[i+l.k-I]);

The lists of the interpolating polynomials, variables,
node co-ordinates, and central point co-ordinates are

fnf2Sk=
p=(l.t.x.x*2);
var=(x.t)r
coor=({O.-h.O.h}.(l.O.O.O)}z
cp=(O.l):

The desired finite difference formula is

ln/.?9J=
differencePorrula=
coefficients[p.var.coor.(t).cp].TY==
a+coefficients[p.ver.coor.(x,x),cp].TV

ff&f.W=

_(T[i. T[i. k] ;' + k]) + - ==
1

a (
T[-1 + i, -1 + k] 2 T[i,

h2 - hzi + k1 +
T[l + i. -1 + k]

h2)

The temperature T(i, k) is given by tern

/&CCC=
(ter)=T[i,k]l.Simplifp[

Solve[differencePorrla.
T[i,k]]]:tem

#Ui/30/=

(a 1 T[-1 + i, -1 + k] + h2 T[i, -1 + k] -
2a lT[i, -1 + k] + a 1 T[l + i, -1 + k]) /

h2

The parameters are [8]

&9/L=
h=O.l~a=l~l=O.Ol16;

The initial condition is

/nfXY.=
Do[T[i.O]-Chop[lr[Sin[Pi h ill].

{i.O.lO)l

The boundary conditions are

/n/331=
Do~T[O.kl=TClO.k]-O.{k.lO}]

The rule finding the temperature is

/nf34k=

TCa _.b_]:=T[a.b]=H[i=e:k=b:tem]

378 M.D. MIKHAILOV

The solution rule is We clear the computer memory

solution[kX_.kT_]:=
Table[T[i.k].{k.O.kT].

{i.O.kX)]//Ii

The temperature T(i.k) for i = O-5 and k = O-10 is

/&LV=
s=solution[S.lO]

{{O, 0.309017, 0.587785, 0.809017, 0.951057, 1. },
{O. 0.303976, 0.578196, 0.795818, 0.935541,
0.983686). {O, 0.299016, 0.568763, 0.782835,
0.920278, 0.967637).
{O, 0.294138, 0.559484, 0.770063, 0.905264,
0.951851). {O, 0.289339, 0.550356, 0.7575,
0.890495, 0.936322).
{O. 0.284619, 0.541377, 0.745142, 0.875967,
0.921046). (0, 0.279975, 0.532545, 0.732985,
0.861676, 0.90602).
(0, 0.275408, 0.523857, 0.721027, 0.847618,
0.891238). {0, 0.270915, 0.51531, 0.709264,
0.83379, 0.876698).
{O, 0.266495, 0.506903, 0.697693, 0.820187,
0.862395). (0, 0.262147, 0.498633, 0.68631,
0.806806, 0.848326)]

This table coincides with the results given in ref. [8].
The graphic representation of the temperature is

/n/J'7J=
ListPlot3D[t]:

3v
6

WAVE EQUATION

The classical second-order wave equation is a model
case of hyperbolic equation. We consider here finite
difference solution of this equation by using Mafhe-
marica. Let us solve the problem

i7’ T (7’7.

(7*’ - ax” T(0, t) = T(l, t) = 0,

T(.x, 0) = 0.2.x(1 -_u) sin (nx),
dT(x,O)

at
- 0.

M3LV=
Clear[T,solution,i,k.h.l.al

Then we choose a grid consisting of equidistant

horizontal and vertical lines. The space and time co-

ordinates are .Y = ih and I = kl, where i and k arc
integers. The temperature at point (i. k) is rclatcd to
temperatures at the three neighbouring points. The
vector of temperature is

h/3p/-=
~=IT[i.k].T[i-l.k-l].T[i.k-I].

TCi+l.k-l].T[i.k-Z]};

The lists of the interpolating polynomials, variables,

node co-ordinates. and central point co-ordinates arc

/l?i+t?j?~=
p={l,t,t-Z,x.x*2)r
var={x.t);
coor={{O.-h.O.h.O}.{l.O_O_O.-l)};
cp={O.O):

The desired finite difference formula is

/d 44k=
differenceFormula=

coefficients[p~~~~coor.(t.t},cp].
=

coefficients[p+var.coor,(x,x},cp].

T[i. -2 + k] 2 T[i. -1 + k]

l2 - l2

+ T[i. kl

l2
a (T[-1 + i, -1 + k] _ 2 T[i, -1 + k]

h2 h2
T[l + i, -1 + k]

h2)

The temperature T(i, k) is given by tern

lnf45J=
{ter)=T[i,k]/.Sirplify[

Solre[differenceFormula.
T[i.klll:te=

&M45f=

{a l2 T[-1 + i, -1 + k] - h2 T[i, -2 + k]
3 3

==

+

+

2 h' T[i, -1 + k] - 2 a 1' T[i. -1 + k] +

a l2 T[l + i, -1 + k]) / h2

The parameter is assumed to be

/nf&'J=
h=l=O.O5;a=l;

The initial conditions arc [8]

/n/471=
Do[T[i.O]=

H[O.Zh i(l-h i)Sin[Pi h i]].
(i.O.ZO)l

Do[T[i.l]=
EI[(T[i-1.0]+T[i+1.0]1/21.

{i.lS)]

The finite difference method 379

The boundary conditions are

In/ 45?!=
Do[T[O.k]=T[ZO.k]=O.(k.ll)]

The rule finding the temperature is

ln/SOk=
T[a_.b_l:=T[a.bl=l[i=a.k-b:ter]

The solution rule is

solution[kX__ kT_]:=
Table[!i[T[i.k].3].(k.O.kT}.

{i.O.kX)l

The solution is

O&G?&=
s=Chap[solution[lO.iOlj

&lff5~;,=
{{O. 0.00149, 0.00556. 0.0116, 0.0188, 0.0265,

0.034. 0.0405. 0.0457, 0.0489, 0.05).
(0, 0.00278. 0.00653+ 0.0122, 0.019, 0.0264,
0.0335, 0.0398, 0.0447, 0.0478, 0.0489).
(0, 0.00505, 0.0094, 0.014, 0.0198, 0.0261,
0.0322, 0.0377, 0.042. 0.0447, 0.0457).
(0. 0.00662, 0.0125, 0.017, 0.021, 0.0256,
0.0302, 0.0344, 0.0377, 0.0398, 0.0405).
(0. 0.00747, 0.0142. 0.0195, 0.0228, 0.0252.
0.0278, 0.0302, 0.0322, 0.0335, 0.034).
(0, 0.00758, 0.0145, 0.02, 0.0237. 0.025.
0.0252, 0.0256, 0.0261. 0.0264. 0.02653,
{O. 0.00701, 0.0134, 0.0187, 0.0222, 0.0237,
0.0228, 0.021, 0.0198, 0.019. 0.0188).

(0, 0.00584, 0.0112, 0.0156, 0.0187, 0.02,
0.0195, 0.017, 0.014, 0.0122, 0.0116).

(0, 0.00417. 0.00801, 0.0112, 0.0134, 0.0145,
0.0142, 0.0125, 0.0094, 0.00653, 0.00556).

(0, 0.00217, 0.00417, 0.00684, 0.00701.
0.00758, 0.00747, 0.00662, 0.00505, 0.00278,
0.00149). to. 0. 0. 0. 0. 0. 0. 0, 0, 0. O}}

This table coincides with the results given in ref. [S].

I

2

3

4

5

6.

I.

8.

The graphic representation of the solution is

&&3Y~=
ListPlot‘Dh

REFERENCES

St. Wolfram, ‘~at~em~t~cu (2nd Edn). Addison Wesley.
California (1991).
M. D. Mikhailov, Finite element method by using
Mathematics, NATO Advanced Research Work Shop
on Mathematical Modelling in Engineering Education,
Izmir-Turkey, 12--16 July (1993).
T. P. Ciammo. Difference expression coefficients
algorithm, 79, Comm. ACM Collected Algorithms
(1962).
M. D. Mikhailov and M. A. Aladjem, Automatic solution
of thermal problems. In Numerical Method.s in Heat
Transfir (Edited by R. W. Lewis, K. Morgan. 0. C.
Zienkiewicz). Ghan. 2. Wilev. New York (1981).
M. A. AladJem an’d M. D. ~ik~ilov, A &rap; function
codewriter, Co~z~~un. Appf. Numer. Merh. 4, 807-814
(1988).
I. S. Berezin and N. P. Zhidkov, Computing Methods,
Vol. I, pp. 210-215. Addison-Wesley, Reading, Mass.
(1965). \ /
M. N. Ozisik, Boundary Value Problems of’ Heat Conduc-
tion. PU. 426-427. International Textbook Comnanv.
Scranidn, Pennsylvania (1968).

.,

N. W. Kopchenova and I. A, Maron, Computational
Mathematics in Examples and Problems. pp. X4-265,

281-282,289-290. Nauka, Moscow (1972).

